Combining the Ultra-Weak Variational Formulation and the Multilevel Fast Multipole Method
نویسندگان
چکیده
Because of its practical significance, many different methods have been developed for the solution of the time-harmonic Maxwell equations in an exterior domain at higher frequency. Often methods with complimentary strengths can be combined to obtain an even better method. In this paper we provide a numerical study of a method for coupling of the Ultra-Weak Variational Formulation (UWVF) of Maxwell’s equations, a volume based method using plane wave basis functions, and an overlapping integral representation of the unknown field to obtain an exact artificial boundary condition on an auxiliary surface that can be very close to the scatterer. Combining the new algorithm with a multilevel fast multipole method we obtain an efficient volume based solver with an exact auxiliary boundary condition, but without the need for singular integrals.
منابع مشابه
Fast Integral Methods for Volumetric Structures
In this paper we discuss the development and implementation of volumetric integral equations for both dielectric and magnetically permeable materials using curvilinear hexahedral elements. Both piecewise constant and higher order basis functions will be examined in the context of volumetric multilevel fast multipole method implementation. Comparisons with corresponding finite element– boundary ...
متن کاملComputational Aspects of the Ultra Weak Variational Formulation
The ultra weak variational formulation (UWVF) approach has been proposed as an effective method for solving Helmholtz problems with high wave numbers. However, for coarse meshes the method can suffer from instability. In this paper we consider computational aspects of the ultra weak variational formulation for the inhomogeneous Helmholtz problem. We introduce a method to improve the UWVF scheme...
متن کاملSsor Preconditioned Inner-outer Flexible Gmres Method for Mlfmm Analysis of Scat- Tering of Open Objects
To efficiently solve large dense complex linear system arising from electric field integral equations (EFIE) formulation of electromagnetic scattering problems, the multilevel fast multipole method (MLFMM) is used to accelerate the matrix-vector product operations. The inner-outer flexible generalized minimum residual method (FGMRES) is combined with the symmetric successive overrelaxation (SSO...
متن کاملFourier-Based Fast Multipole Method for the Helmholtz Equation
The multilevel fast multipole method (MLFMM) is an algorithm that has had great success in reducing the computational time required to find the solution to the Galerkin boundary integral form of the Helmholtz equation. We present a new formulation of the MLFMM using Fourier basis functions rather than spherical harmonics in order to accelerate and simplify the time-critical stages of the algori...
متن کاملHybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry
In this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons with the finite elementboundary integral method are given in terms of accuracy and computing resources. We also discuss preconditioning, parallelization of the multilevel fast multipole method and propose higher-ord...
متن کامل